

FORMULAS

RPM for UNC/UNF Taps

RPM= (revolution/minute) = $\frac{\text{cutting speed (SFM)} \times 3.82}{\text{Tap diameter}}$

Feed Rate for UNC/UNF Taps

IPR=(inch/revolution)= 1 inch ÷ Threads per inch (TPI)

IPM=(inch/minute)= RPM ÷ Threads per inch (TPI)

RPM for M/MF Taps

RPM=(revolution/minute) = <u>cutting speed (SFM) × 97.028</u>

Tap diameter(mm)

Feed Rate for M/MF Taps

IPR=(inch/revolution)= pitch(mm) \mathbf{x} 0.03937

IPM=(inch/minute)= RPM \mathbf{x} pitch(mm) \mathbf{x} 0.03937

TO CALCULATE TAP DRILL SIZE

UNC/UNF and M/MF Cut Taps - General Requirements

Tap Drill Size = Tap basic major diameter – pitch

UNC/UNF Cut Taps - Special Percentage of Thread Requirement

Drill Size = Basic major diameter - <u>0.01299× desired % of thread</u>
Threads per Inch (TPI)

M/MF Cut Taps - Special Percentage of Thread Requirement

Drill Size (mm) = Basic major diameter- $\frac{\text{desired \% of thread } \times \text{ pitch(mm)}}{76.98}$

UNC/UNF and M/MF Form Taps - General Requirements

Tap Drill Size = Basic major diameter - pitch

2

UNC/UNF Form Taps - Special Percentage of Thread Requirement

Drill Size = Basic major diameter - <u>0.0068×desired % of thread</u>
Threads per Inch (TPI)

M/MF Form Taps - Special Percentage of Thread Requirement

Drill Size (mm) = Basic major diameter -<u>desired % of thread*pitch(mm)</u>
147.06